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Abstract 22 

Improving predictive understanding of Earth system variability and change requires data-model 23 

integration. Efficient data-model integration for complex models requires surrogate modeling to 24 

reduce model evaluation time. However, building a surrogate of a large-scale Earth system 25 

model (ESM) with many output variables is computationally intensive because it involves a large 26 

number of expensive ESM simulations. In this effort, we propose an efficient surrogate method 27 

capable of using a few ESM runs to build an accurate and fast-to-evaluate surrogate system of 28 

model outputs over large spatial and temporal domains. We first use singular value 29 

decomposition to reduce the output dimensions, and then use Bayesian optimization techniques 30 

to generate an accurate neural network surrogate model based on limited ESM simulation 31 

samples. Our machine learning based surrogate methods can build and evaluate a large surrogate 32 

system of many variables quickly. Thus, whenever the quantities of interest change such as a 33 

different objective function, a new site, and a longer simulation time, we can simply extract the 34 

information of interest from the surrogate system without rebuilding new surrogates, which 35 

significantly saves computational efforts. We apply the proposed method to a regional ecosystem 36 

model to approximate the relationship between 8 model parameters and 42660 carbon flux 37 

outputs. Results indicate that using only 20 model simulations, we can build an accurate 38 

surrogate system of the 42660 variables, where the consistency between the surrogate prediction 39 

and actual model simulation is 0.93 and the mean squared error is 0.02. This highly-accurate and 40 

fast-to-evaluate surrogate system will greatly enhance the computational efficiency in data-41 

model integration to improve predictions and advance our understanding of the Earth system.        42 
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1 Introduction 43 

Improving predictive understanding of Earth system variability and change requires data-44 

model integration. For example, Bilionis et al. (2015) improved Community Land Model (CLM) 45 

prediction of crop productivity after model calibration; Müller et al. (2015) improved the CLM 46 

prediction of methane emission after parameter optimization; and Fox et al. (2009) and Lu et al. 47 

(2017) improved the terrestrial ecosystem model predictive credibility of carbon fluxes after 48 

uncertainty quantification. However, data-model integration methods are usually 49 

computationally expensive involving a large ensemble of model simulations, which prohibits 50 

their application to complex Earth system models (ESMs) with lengthy simulation time. To 51 

reduce computational costs, surrogate modeling is widely used (Razavi et al., 2012; Gong et al, 52 

2015; Ray et al., 2015; Huang et al., 2016, Lu et al., 2018; Ricciuto et al., 2018). The surrogate 53 

model, which is a set of mathematical functions, approximates the actual simulation model based 54 

on pairs of simulation model input-output samples, and then replaces the simulation model in the 55 

data-model integration. As the ESMs evaluation is expensive, it is desired to use a limited 56 

number of ESM simulation samples to build an accurate surrogate. As the surrogate model needs 57 

to be calculated many times in data-model integration, it is required to build a fast-to-evaluate 58 

surrogate. In this study, we use a very few simulation model runs to build an accurate and fast 59 

evaluated surrogate system of a large scale problem based on advanced machine learning 60 

methods.  61 

In Earth system modeling, we usually need to build a surrogate system of many output 62 

variables over large spatial and temporal domains. ESMs tend to be simulated in a regional or 63 

global scale with many grid cells for several years, producing a large number of output variables. 64 

In addition, ESMs are used to solve versatile scientific problems, so the quantities of interest 65 
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(QoIs) often change. Moreover, the development of a surrogate requires expensive ESM runs, 66 

and a large number of runs are often needed to capture the complex model input-output 67 

relationship. Therefore, it is reasonable to build a surrogate system for all possible model outputs 68 

to reduce the efforts of rerunning ESMs for a new surrogate development when the QoIs change. 69 

In this way, whenever we simulate the outputs in a new site or for additional sites, at a different 70 

time or for a longer period, we can simply extract the information of interest from the large 71 

surrogate system without spending extra efforts in building new surrogates, which significantly 72 

saves the computational costs. 73 

Building and evaluating a surrogate system of a large number of model outputs can be very 74 

computationally intensive for almost all the surrogate methods. Polynomials and artificial neural 75 

networks are widely used for surrogate modeling (Razavi et al., 2012; Viana et al., 2014). 76 

Polynomial methods, such as polynomial regression and radial basis functions, need to solve 77 

polynomial coefficients in the surrogate construction and to calculate matrix multiplications in 78 

the surrogate evaluation. Using a pth-order polynomial to approximate a model with d 79 

parameters, M = (p+d)!/(p!d!) coefficients need to be solved, i.e., the number of coefficients 80 

increases factorially fast with the parameter size and polynomial order. When d=40, a second-81 

order polynomial involves 861 coefficients and a third-order polynomial involves 12341 82 

coefficients. ESMs have many uncertain parameters and a high-order polynomial is usually 83 

needed to approximate complex ESMs, which can easily lead to a prohibitive number of model 84 

evaluations, up to ~105, necessary to compute the polynomial coefficients. To reduce the 85 

computational costs, some regularization techniques such as Bayesian compressive sensing have 86 

been used (Sargsyan et al., 2014; Ricciuto et al., 2018). These regularization techniques can use a 87 

few samples to solve a large number of coefficients (i.e., an underdetermined system) by 88 
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iteratively minimizing the L1 norm of the coefficient vector. But they usually perform 89 

minimization once for one model output, so for a large model outputs problem, significant 90 

computing effort is required. To reduce the computing burden in building polynomial-based 91 

surrogates, we need to reduce the output dimensions.  92 

Reducing the model output dimensions also improves computational efficiency in the 93 

evaluation of the polynomial-based surrogates. For example, evaluating the third-order 94 

polynomial-based surrogate of the model with 40 parameters and 300,000 outputs at 1 parameter 95 

sample, we need to calculate two matrix multiplications where matrix A has the size [1, M] and 96 

B has the size [M, Nout] and M =12341 and Nout=300,000. The surrogate evaluation takes about 97 

90 seconds and most time is spent on loading the huge matrix. When Nout reduces to 20, the 98 

surrogate evaluation quickly reduces to less than a second. Note that an ESM can easily have 99 

more than 40 parameters and more than 300,000 model outputs. Even using the most advanced 100 

supercomputers with GPUs, the data storage and loading are still a bottleneck. Thus, reducing 101 

model output dimensions is necessary for both fast building and evaluating polynomial-based 102 

surrogates. 103 

Neural network (NN) assisted surrogate modeling also suffers from high computational 104 

costs when applied to a large-scale problem with many QoIs. To approximate a complex ESM 105 

with many outputs, a complicated NN with many wide hidden layers is usually needed to capture 106 

the complex relationship between the model inputs and outputs, because each spatial and 107 

temporal output variable is driven by different meteorological forcing such as air temperature, 108 

humidity, wind speed, precipitation, and radiation. The full connections between nodes in the 109 

input layer and the first hidden layer, between nodes of the hidden layers, and between nodes in 110 

the last hidden layer and a large number of nodes on the output layer, involve a great amount of 111 
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NN weights and biases that need to be solved. For the same example discussed above, to 112 

approximate the model with 40 parameters and 300,000 model outputs, an NN with two hidden 113 

layers and each layer having 100 nodes has over 30 million weights and biases. Calculation of 114 

these weights and biases requires many samples to train the NN for a good fit. Each training 115 

sample involves one model evaluation. However, ESM simulation is time consuming, which 116 

usually takes several hours or days and can be up to months or even years. A limited sample size 117 

is not enough to train a deep and wide NN for convergence and a simple NN trained by a small 118 

sample size may not capture underlying Earth systems accurately. Thus, reducing model output 119 

dimensions is needed to advance the NN-based surrogate modeling. A small output size reduces 120 

the width of the output layer and also simplifies the relationship between the model inputs and 121 

outputs, so that a simple NN architecture can be appropriate and a small sample size can be 122 

sufficient to accurately train the simple NN. In addition, a simple NN can also be fast evaluated 123 

with small weight matrix multiplications.   124 

In this work, we propose to use singular value decomposition (SVD) to reduce model 125 

output dimensions, so as to improve the computational efficiency in both building and evaluating 126 

the surrogates. ESM outputs usually show periodic changes along time and strong correlations 127 

between locations, which promises a fast decay of singular values. So, we can use a small 128 

number of singular value coefficients to capture a great amount of output information, enabling a 129 

significant output dimension reduction. We use the NN for surrogate modeling, because 130 

compared to polynomial methods, NNs have shown less difficulty in fitting highly nonlinear and 131 

discontinuous functions which are usually observed in ESMs response surfaces. For example, 132 

carbon flux state variables, such as gross primary productivity (GPP), are strongly affected by 133 

vegetation related parameters. When the parameter samples cause zero vegetation growth, GPP 134 
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has zero values. Whereas when the parameter samples cause high vegetation growth, GPP has 135 

large positive values. This leads to a discontinuous GPP response surface jumping from zeros to 136 

nonzeros.  137 

NNs theoretically can fit any functions, but their practical performance strongly depends 138 

on the NN’s architectures and hyperparameters. NN has many hyperparameters such as the 139 

number of layers, number of nodes in each layer, type of activation functions, and learning rate 140 

of the stochastic gradient descent optimization. A slight change in the hyperparameter value can 141 

result in dramatically different NN performance. Development of a high-performing NN is time-142 

intensive and usually requires trial-and-error tuning by machine learning experts. In this work, 143 

we use Bayesian optimization techniques to optimize the NN architecture and hyperparameters 144 

so as to produce an accurate NN model for the training data. Bayesian optimization searches the 145 

hyperparameter space to iteratively minimize the validation errors of the NN by balancing 146 

exploration and exploitation (Shahriari et al., 2016). Researches suggested that Bayesian 147 

hyperparameter optimization of NNs is more efficient than manual, random, or grid search with 148 

better overall performance on test data and less time required for optimization (Bergstra et al., 149 

2011; Snoek et al., 2012). Bayesian optimization involves a large ensemble of NN fittings and it 150 

is a sequential model-based optimization, thus, fast training of the NN models is important. Our 151 

proposed SVD method can simplify the NN architecture so as to advance the NN training and 152 

improve the Bayesian optimization performance. 153 

In this effort, we propose an SVD-enhanced, Bayesian-optimized, and NN-based surrogate 154 

method and aim to build an accurate and fast-to-evaluate surrogate system of a large-scale model 155 

using a few model runs, so as to improve computational efficiency in surrogate modeling and 156 

thus advance the data-model integration. We apply the method to a simplified land model in the 157 

Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2018-327
Manuscript under review for journal Geosci. Model Dev.
Discussion started: 17 January 2019
c© Author(s) 2019. CC BY 4.0 License.



 8 

Energy Exascale Earth System Model (sELM) to improve the model predictive capability of 158 

carbon fluxes. We build a surrogate system of 42660 model output variables which are annual 159 

GPPs at 1422 locations simulated for 30 years. The sELM is a regional-scale terrestrial 160 

ecosystem model that simulates terrestrial water, energy, and biogeochemical processes in 161 

terrestrial surfaces. Simulation of sELM is important for improving our understanding of 162 

ecosystem responses to climate change. However, sELM requires lengthy times for hydrologic 163 

and carbon cycle equilibration, and these high computational costs limit the affordable number of 164 

simulations in data-model integration thus resulting in poor model performance. The proposed 165 

machine learning assisted surrogate method makes the sophisticated data-model integration 166 

computationally feasible and promises an improvement of the sELM predictions.       167 

The major contributions of this work are (1) using SVD to reduce model output 168 

dimensions so as to improve computational efficiency in both building and evaluating an 169 

accurate surrogate of a large-scale ESM; (2) using Bayesian optimization techniques to fast 170 

generate an accurate NN-based surrogate; and (3) applying the proposed method to build a large 171 

surrogate system of a regional-scale ESM to advance data-model integration. To our knowledge, 172 

the method of using SVD to enhance surrogate modeling is novel and we have not seen the 173 

application of Bayesian optimization to improve NN-based surrogates in Earth system modeling.           174 

The paper is organized as follows. In section 2, we first describe the sELM, the model 175 

parameters and the QoIs we build surrogates for; following that, we introduce the SVD, NNs, 176 

and Bayesian optimization methods. In section 3, we apply the methods to the sELM and analyze 177 

the surrogate accuracy. In section 4, we discuss strategies to improve surrogate accuracy and 178 

investigate our method’s performance in the application of these strategies. In section 5, we end 179 

this paper by drawing our conclusions. 180 
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2 Materials and Methods 181 

2.1 Description of sELM and related parameters  182 

We developed a simplified version of Energy Exascale Earth System (E3SM) land model 183 

(ELM), or sELM, to simulate carbon cycle processes relevant for Earth system models in a 184 

computationally efficient framework. This framework allows us to perform large regional 185 

ensembles that are computationally infeasible using offline land surface models such as ELM.  186 

sELM is a combination of model elements from the Data Assimilation Linked Ecosystem 187 

Carbon model (DALEC; Williams et al., 2005) and the Community Land Model version 4.5 188 

(CLM4.5; Oleson et al., 2013). sELM consists of five process-based submodels that simulate 189 

carbon fluxes between five major carbon pools using 49 overall parameters. Based on previous 190 

sensitivity analysis using ELM (Ricciuto et al., 2018), this study considers the most sensitive 191 

eight parameters associated with four out of the five submodels. We summarize all five process-192 

based submodels and their interactions below and in Figure 1.  193 

sELM consists of five major submodels: photosynthesis, autotrophic respiration, 194 

allocation, deciduous phenology, and decomposition. Photosynthesis is driven by the aggregate 195 

canopy model (ACM) from the DALEC, which itself is calibrated against the soil-plant-196 

atmosphere model (Williams et al., 2005). ACM predicts GPP as a function of carbon dioxide 197 

concentration, leaf area index, maximum and minimum daily temperature, and 198 

photosynthetically active radiation.  Here the GPP predicted by ACM is modified by BTRAN, 199 

which reduces GPP when soil water is insufficient to support transpiration. Because sELM does 200 

not predict soil moisture, BTRAN is calculated in a full ELM simulation and is fed into sELM as 201 

an input. ACM shares one parameter, the leaf carbon to nitrogen ratio (leaf C:N), with the 202 
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autotrophic respiration model and employs an additional parameter, the specific leaf area at the 203 

top of the canopy (slatop).  204 

The remaining four submodules are based on ELM. The autotrophic respiration model 205 

computes the growth and maintenance respiration components and is controlled by four 206 

parameters, the leaf C:N, the fine root carbon to nitrogen ratio (froot C:N), the base rate of 207 

maintenance respiration (br_mr), and temperature sensitivity for maintenance respiration 208 

(q10_mr). The allocation model partitions carbon to several vegetation carbon pools following 209 

those in ELM: leaves, fine roots, live stem, dead stem, live coarse roots and dead coarse roots. In 210 

the allocation model, we only consider one parameter, the fine root to leaf allocation ratio 211 

(froot_leaf). The deciduous phenology model is used to predict the timing of budbreak and 212 

senescence. It considers two parameters, the critical day length to initiate autumn senescence 213 

(crit_dayl) and the number of accumulated growing degree days needed to initiate spring leaf-out 214 

(crit_onset_gdd). The last submodel is a decomposition model that simulates heterotrophic 215 

respiration and the decomposition of litter into soil organic matter using the converging trophic 216 

cascade framework as in the CLM4.5 (Oleson et al., 2013). Because this study focuses on plant 217 

carbon uptake, no uncertain parameters are considered in the decomposition model. In sELM, 218 

nutrient feedbacks are not represented explicitly, however a constant nitrogen limitation factor is 219 

included to downregulate photosynthetic uptake. 220 

The sELM can simulate several carbon state and flux variables as shown in Figure 1 with 221 

green shapes. GPP, which represents the total plant carbon uptake, is considered in this study. 222 

Here we use sELM to predict annual GPP in deciduous forest systems in the eastern region of the 223 

United States for 30 years between 1981-2010. The carbon state variables are spun up to steady 224 

state by cycling the GSWP3 input meteorology (Kim et al., 2017) from 1981-2010 for 5 cycles, 225 
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and the 6th cycle is used as the output for our surrogate modeling study. The region of interest 226 

covers 1422 land grid cells (locations) as shown in Figure 2. Given 30 outputs at each location 227 

(annual values over 30 years), a total of 42660 GPP variables are simulated. The model uses one 228 

plant functional type and the phenological drivers such as air temperature, solar radiation, vapor 229 

pressure deficit, and CO2 concentration are used as boundary conditions. One regional sELM run 230 

takes about 24 hours on a single processor, which although much faster than ELM is still 231 

computationally too expensive to be directly used in model-data integration studies. To improve 232 

the computational efficiency in generating the sELM simulation samples to develop the surrogate 233 

model, we use high performance computing to perform an ensemble of 2000 sELM model 234 

simulations in parallel. The 2000 parameter input samples are randomly drawn from the 235 

parameter space defined in Figure 3. The numerical ranges of these parameters are designed to 236 

reflect their average values and broad uncertainties associated with the temperate deciduous 237 

forest plant functional type. The output samples are sELM simulated GPPs at the 1422 locations 238 

for 30 years. In the surrogate modeling, part of the 2000 input-output samples are used for 239 

developing the surrogate and part of them are used to evaluate the surrogate accuracy, as 240 

discussed in section 3. 241 

2.2 Efficient surrogate modeling methods 242 

In this section, we introduce our SVD-enhanced, Bayesian-optimized, and NN-based 243 

surrogate methods. We first describe the SVD for reducing data dimensionality, then introduce 244 

the NN techniques for building a surrogate model, and last depict the Bayesian optimization 245 

algorithm for producing a high-performing NN-based surrogate. 246 
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2.2.1 Singular value decomposition for data compression 247 

We build a surrogate system of model outputs by fitting a data matrix whose columns are 248 

output variables and rows are output samples. For a model with 100000 output variables, the 249 

columns of this matrix span a 100000-dimensional space. Encoding this matrix on a computer 250 

takes quite a lot of memory and evaluating this matrix takes a large number of calculations. We 251 

are interested in approximating this matrix with some low-rank matrix but remaining its most 252 

information, so as to reduce data transfer and accelerate matrix calculation.       253 

 Singular value decomposition (SVD) decomposes a matrix A with size m  n into three 254 

other matrices, 𝐀 = 𝐔𝐒𝐕𝑇, where U is an m  m orthogonal matrix, V is an n  n orthogonal 255 

matrix, and S is an m  n diagonal matrix saving singular values in descending order on the 256 

diagonal. Truncated SVD keeps the K largest singular values and corresponding K column 257 

vectors of U and K row vectors of VT to form �̃� = 𝐔𝐾𝐒𝐾𝐕𝐾
𝑇. The K-rank matrix �̃� has proven to 258 

be the best approximation of A in minimizing the Frobenius norm of the difference between A 259 

and �̃� under the constraint of rank(�̃�) = K. In addition, the total of the first K singular values 260 

divided by the sum of all the singular values is the percentage of information that those singular 261 

values contain. For example, if we want to keep 90% of the data information, we just need to 262 

compute sums of K largest singular values until we reach 90% of the sum and discard the rest. 263 

By dropping all but a few singular values and then recomputing the approximated matrix, the 264 

SVD technique compresses the data information and reduces data dimensions. When the matrix 265 

A shows strong correlations between columns (variables), a low-rank matrix �̃� can make a very 266 

accurate approximation of A.  267 

In this study, we use SVD to reduce training data dimensions. The training data matrix A 268 

[m, n] for surrogate construction contains model output samples information. n columns are 269 
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output variables (e.g., the 42660 temporal and spatial GPPs in this work) and m rows are the 270 

samples of these variables (e.g., the sELM simulation results of the 42660 GPPs for the m 271 

parameter samples), and usually n≫m for expensive ESMs with many outputs. In 272 

implementation, we first perform truncated SVD to get low-rank matrices 𝐔𝐾[𝑚, 𝐾],  𝐒𝐾[𝐾, 𝐾], 273 

and 𝐕𝐾
𝑇[𝐾, 𝑛] with K≪n, we then use the low-dimensional dataset (𝐕𝐾

𝑇𝐀𝑇)𝑇 with reduced size m 274 

 K as training data to build the surrogate model of the K largest singular value coefficients. 275 

Next, we evaluate the surrogate model at q new data points to get results Ynew with size q  K. 276 

Lastly, we transform the predicted values back to its original size q  n through 𝐘new𝐕𝐾
𝑇 to obtain 277 

the surrogate approximation of the n variables at the q new data points. 278 

2.2.2 Neural networks for surrogate modeling 279 

Artificial neural networks (NNs) consist of fully connected hierarchical layers with nodes 280 

which can be flexibly used for function approximation (Yegnanarayana, 2009). The first layer is 281 

the input layer and each node in the input layer represents one model input variable. The last 282 

layer is the output layer and each node in the output layer represents one model output variable. 283 

The layers between input and output layers are hidden layers which are used to approximate the 284 

relationship between model inputs and outputs. When the relationship is complex, a complicated 285 

NN with many wide hidden layers is usually needed. The input layer first assigns model 286 

parameter values to its nodes. Then each node in the first hidden layer takes multiple weighted 287 

inputs, applies the activation function to the summation of these inputs, and calculates the node’s 288 

value. Next, the second hidden layer takes the values on the first hidden layer nodes as inputs 289 

and calculates its nodes’ values in the same way. This process moves forward till we get values 290 

of all nodes in the output layer, i.e., obtaining NN predictions for the given model parameter 291 

input values. The nodes in each layer are fully connected to all the nodes in its previous and 292 
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subsequent layers. Each of these connections has an associated weight and bias. A complicated 293 

NN results in a large number of weights. By tuning these weights and biases based on some 294 

training data, we improve the NN approximation of the underlying simulation model.  295 

NN uses stochastic gradient descent (SGD) method to optimize its weights and biases 296 

(Bottou, 2012). SGD optimizes variables by minimizing some loss function based on the 297 

function’s gradients to these variables. The loss function is usually defined as the mean squared 298 

error (MSE) between the NN predictions and model simulations for the same set of model 299 

parameter samples in the training data. SGD iteratively updates the optimized variables at the 300 

end of each training epoch. In the process, the learning rate, which specifies how aggressively 301 

the optimization algorithm jumps between iterations, greatly affects the algorithm’s performance 302 

and has to be tuned. A small learning rate will take a long time to reach the optimum causing a 303 

slow convergence, whereas a big learning rate will bounce around the optimum causing unstable 304 

results and a difficult convergence. Using SGD to optimize a complex NN with many weights 305 

requires a great amount of computational efforts and has difficulty in convergence. First, many 306 

training data are required to tune a large number of weights. Small training data can easily cause 307 

over-fitting, i.e., the NN “perfectly” fits the training data but performs badly on new data, thus 308 

deteriorating the NN prediction accuracy. In addition, a large number of weights involve massive 309 

matrix calculations in evaluating the loss function, slowing down the training process. 310 

Furthermore, a complicated NN has difficulty in convergence and can easily get stuck in local 311 

minima. In this work, we use SVD to reduce the model output dimensions, so as to decrease the 312 

number of nodes in the output layer and simplify the NN architecture, thus reducing the size of 313 

the weights and enabling a reasonable NN training from small training data, and ultimately 314 

improving the computational efficiency. 315 
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2.2.3 Bayesian optimization algorithm for NN hyperparameter optimization  316 

NN involves a lot of hyperparameters that dramatically affect its performance such as the 317 

number of layers, the number of nodes in each layer, and the learning rate of the SGD algorithm. 318 

Hyperparameter optimization is needed to produce a high-performing NN. This requires 319 

optimizing an objective function f(x) over a tree-structured configuration spaces 𝑥 ∈ Χ, where 320 

some leaf variables (e.g., the number of nodes in the third hidden layer of an NN) are only well 321 

defined when branch variables (e.g., a discrete choice of how many layers to use) take particular 322 

values. In addition, the optimization not only optimizes discrete and continuous variables, but 323 

also simultaneously choose which variables to optimize. When the NN is used for surrogate 324 

modeling, the objective function is the NN accuracy of predicting some validation data. In this 325 

case, the f(x) does not have a simple closed form but can be evaluated at any arbitrary query 326 

point x in the configuration space. For such optimization problem, a sequential search method is 327 

needed, besides some inefficient grid search and random search approaches (Bergstra and 328 

Bengio, 2012). The sequential search method starts with some random points in the search space, 329 

and then iteratively evaluates new points based on NN predictions on previously evaluated 330 

points. After N evaluations, we choose the optimal combination of the hyperparameters resulting 331 

in the highest NN prediction accuracy. Among the sequential search algorithms, Bayesian 332 

optimization is able to take advantage of full information provided by the history of the 333 

optimization to improve the search efficiency.     334 

Tree-structured Parzen estimator (TPE) and Gaussian process are two widely used 335 

Bayesian optimization algorithms (Shahriari et al., 2016; Bardenet and Kegl, 2010; Niranjan et 336 

al., 2010; Snoek et al., 2012). In comparison to the Gaussian process, TPE works well for all 337 

types of NN hyperparameter variables, is robust to NN randomization, has a fast calculation and 338 
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a straightforward implementation without associated hyperparameters specification (Bergstra et 339 

al., 2011). In this work, we use the TPE algorithm for NN hyperparameter optimization. 340 

3 Results 341 

In this section, we present the results of building the surrogate system of 42660 GPP 342 

variables of sELM. First, we demonstrate that our method using SVD can efficiently build and 343 

evaluate a large surrogate system by comparing the results with and without application of SVD. 344 

We then investigate the influence of NN’s architecture on surrogate performance and show that 345 

our method using hyperparameter optimization can fast generate an accurate NN. Last, we 346 

evaluate surrogate accuracy on the large-scale spatial and temporal GPPs. 347 

We consider three sets of data, the training data for fitting the NN, the validation data to 348 

detect overfitting in the NN training and to select the best-performing NN in the hyperparameter 349 

optimization, and the test data to evaluate the NN prediction accuracy. Each data set contains 350 

pairs of parameter and GPP samples. The parameter samples are randomly drawn from the 351 

parameter space defined in Figure 3. To assess the effectiveness of our proposed surrogate 352 

method for a small data set, we consider only 20 training data (Figure 3). The validation data is 353 

chosen as 0.3 fractions of the training data. The NN model will not train on the validation data 354 

but evaluate the loss function on them at the end of each epoch. In each epoch, the training data 355 

is shuffled, and the validation data are always selected from the last 0.3 fraction. Precisely, we 356 

only use 14 samples to tune NN weights. Attribute to shuffling, these 14 samples can be a 357 

different subset from the 20 training data in each epoch, thus we sufficiently explore the limited 358 

20 data information for building the surrogates. We use 1000 test data (Figure 3) to evaluate the 359 

NN prediction accuracy, which makes a reasonable assessment of our proposed method within 360 

an affordable computational cost. Note that the 1000 test data are not needed for building the 361 
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surrogates but used to demonstrate the effectiveness and efficiency of our method. When using 362 

our method to build the surrogates of the 42660 GPPs, only 20 sELM model simulations are 363 

used.          364 

We define the loss function as the mean squared error (MSE) between the NN predictions 365 

and the sELM simulations based on the parameter samples for training. We use Adam algorithm 366 

(Kingma and Ba, 2015) for stochastic optimization of NN and run it for 800 epochs to minimize 367 

the loss function and update NN weights. Adam has been shown a superior stochastic 368 

optimization algorithm in training NN (Basu et al., 2018). There is no right answer for the 369 

optimal number of epochs. A small number of epochs could result in underfitting and a large 370 

number of epochs may lead to overfitting. Here we consider a large number of epochs and in the 371 

meantime use early stopping to avoid overfitting. During the training, when there is no 372 

improvement of loss functions for the validation data in 100 epochs, we stop the training and 373 

choose the weights at the epoch resulting in the smallest loss function of the validation data as 374 

the optimal weights and the associated NN as the best trained NN under the given setting.     375 

We then use the trained NN to predict the 1000 test data and compare the predictions with 376 

the corresponding sELM simulation results to evaluate the NN accuracy. We define two metrics 377 

for evaluation, the MSE and the coefficient of determination. The MSE computes the expected 378 

value of the squared prediction errors; the small the MSE value is, the better the prediction. The 379 

coefficient of determination, also called R2 score, measures how well the unobserved data are 380 

likely to be predicted by the NN model. Denote �̂�𝑖 as the NN prediction of the ith sample and yi 381 

as the corresponding sELM simulation, the R2 score estimated over Ns samples is defined as 382 

𝑅2 = 1 −
∑ (𝑦𝑖−�̂�𝑖)2𝑁𝑠

𝑖=1

∑ (𝑦𝑖−�̅�𝑖)2𝑁𝑠
𝑖=1

 , where �̅� =
1

𝑁𝑠
∑ 𝑦𝑖

𝑁𝑠
𝑖=1 . Best possible value of R2 score is 1.0, indicating 383 

that the NN can perfectly predict the test data. R2 score can be negative indicating the model is 384 
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arbitrarily poor. A constant model gets a R2 score of 0.0. Compared to MSE, the R2 score 385 

considers the variability of the data which provides a more reasonable measure.       386 

3.1 SVD reduces data dimensionality and improves surrogate efficiency  387 

We consider two scenarios when building the surrogate system of the 42660 GPP outputs; 388 

Case I: building the surrogates of reduced data after SVD, and Case II: building the surrogates of 389 

all GPPs directly. In Case I, we first apply SVD to reduce the training data dimensionality, then 390 

build surrogates of the singular value coefficients, and last transfer the surrogate system back to 391 

the original QoIs (i.e., the 42660 GPP variables).  392 

  The goal of this study is to develop a surrogate method that builds an accurate surrogate 393 

system with small training data, so as to reduce the computational costs in simulating the 394 

expensive ESMs. To demonstrate the effectiveness and efficiency of our method, we compare 395 

the surrogate performance of the two cases in predicting the 1000 test data from two aspects: (1) 396 

for the same number of training data, the predictive accuracy of the two surrogates, and (2) the 397 

number of training data used to achieve the similar predictive accuracy.  398 

Figure 4 shows the singular value decay of decomposition of the training data matrix 399 

having 20 samples and 42660 GPP variables. The figure indicates that the singular values decay 400 

very fast. The first 2 singular values drop about 1 magnitude, and the first 5 singular values can 401 

capture 97% information of the training data matrix. To choose a suitable number of singular 402 

value coefficients (Nsvd) to compress the training data and build a surrogate for, we consider a 403 

series of Nsvds, where Nsvd=1, 5, 10, 15, and 20, and investigate their impact on NN 404 

performance. To make a fair comparison, the same NN architectures are used for all Nsvd cases. 405 

We consider a simple NN with 2 hidden layers and each hidden layer has 10 nodes. Figure 5 406 

shows the prediction performance of the NNs based on the 20 training data. The figure indicates 407 
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that with considering only 1 singular value coefficient, the averaged MSE of the predictions is 408 

about 0.053, and the NN model can fit the sELM simulation data well with the R2 score of 0.83. 409 

When 5 singular value coefficients are considered, the NN prediction accuracy improves with the 410 

MSE of 0.02 and the R2 score of 0.93. After Nsvd=5, the MSE and R2 score have minor changes, 411 

suggesting that for the limited 20 training data, Nsvd=5 is a good choice to compress the GPPs 412 

and build a surrogate for. At this time, the surrogate error becomes dominant compared to the 413 

SVD approximation error and including more than 5 singular value coefficients would barely 414 

improve the NN prediction unless more training data are included to reduce the surrogate error. 415 

In the following, we consider Nsvd=5 in Case I and compare its surrogate prediction 416 

performance with Case II which builds surrogates for all GPPs directly. 417 

In Case I, our method is able to use 20 training data to build a highly accurate surrogate of 418 

42660 GPP variables with a small MSE of 0.02 and a high R2 score of 0.93. The detailed NN 419 

performance is explained in Figure 6(a) where the training and validation loss decays in building 420 

the surrogates of the 5 singular value coefficients are plotted. The figure indicates that the loss 421 

functions of the two data sets have similar decay, decreasing dramatically at the first 10 epochs 422 

and then slowly decreasing to the end of training. The closely overlapped two lines in Figure 6(a) 423 

suggest that the trained NN captures the relationship between sELM inputs and outputs pretty 424 

well and can give reasonable predictions of GPPs for a given parameter sample.  425 

To make a fair comparison, we use the same NN architecture in Case II as in Case I except 426 

that the output layer of NN in Case II has all the 42660 GPPs and the output layer in Case I has 427 

only 5 singular value coefficients. Figure 6(b) indicates that the simple NN with 20 hidden nodes 428 

is not sophisticated enough to capture the complex relationship between the 8 inputs and 42660 429 

outputs. As we can see in Figure 6(b), both training and validation losses are relatively high 430 
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suggesting an underfitting. The validation loss is always larger than the training loss suggesting 431 

that the fitted NN does not generalize well and may result in poor performance in predicting new 432 

data. Figure 7 shows R2 scores of Case II in predicting the 1000 test data. The figure indicates 433 

that the simple NN trained by 20 data in Case II has a very poor prediction accuracy with the R2 434 

score of only 0.05, close to a constant model’s performance with a zero R2 score. However, with 435 

the same NN trained by the same 20 data, our SVD-based surrogate method can achieve a high 436 

prediction accuracy with the R2 score of 0.93. This demonstrates our method’s capability in using 437 

a few training samples to build an accurate surrogate model, greatly reducing the computational 438 

costs in generating the expensive model simulation data.  439 

On the other hand, the poor performance in Case II suggests that a wider and deeper NN is 440 

needed when we consider the large outputs directly. We thus increase the nodes of each hidden 441 

layer to 100 and use this complex NN with total 200 hidden nodes to approximate the 442 

relationship of the 8 inputs and 42660 outputs in Case II. This complex NN blows up its 443 

parameters (including weights and biases) to 4.3 million from 255 in Case I. To fit this wide NN 444 

and calibrate its large parameters, 20 training data are way too small to get a reasonable fit. No 445 

matter how we adjust the NN hyperparameters, we cannot get a stable solution in training. We 446 

then increase the training data to 50, Figure 6(c) shows that the increased data greatly decrease 447 

the training and validation losses and the validation loss is slightly higher than the training loss, 448 

implying a good fit. Figure 7 indicates that the complex NN with 200 hidden nodes trained by 50 449 

data in Case II significantly improves the prediction accuracy with the R2 score of 0.73. 450 

However, Case II’s predictive performance is still worse than Case I which has the R2 score of 451 

0.93. We keep increasing the training data (Ntrain) to 100 and 200 in Case II. Figure 6(d) and (e) 452 

indicate that the increase of training data brings the validation loss closer and closer to the 453 
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training loss making the fitted NN represent the underlying sELM better and better. Figure 7 454 

shows that the nicely fitted NNs trained by large Ntrains lead to a high prediction accuracy. With 455 

Ntrain=100, the R2 score is about 0.89, and with Ntrain=200, the R2 score is up to 0.95. 456 

However, compared to Case I using 20 training data to get predictive R2 score of 0.93, Case II 457 

uses near 200 data to get the similar accuracy, increasing 10-fold computational costs. Note that, 458 

each training data involves one sELM simulation and one regional sELM run takes about 24 459 

hours on one processor. Thus, our SVD-based surrogate method greatly improves computational 460 

efficiency in the accurate surrogate modeling.  461 

Our method, in the means of simplifying NN architecture through data compression, not 462 

only reduces the training data but also decreases the training time. Using 20 data to train a simple 463 

NN with 255 parameters, our method takes about 4 seconds. In comparison, the traditional 464 

surrogate method without data compression spends a great effort in training the complex NN 465 

with 4.3 million parameters. As shown in Figure 7, Case II takes 270 seconds to fit the NN based 466 

on 50 training data and 967 seconds for the 200 training data, showing a linear increase in 467 

computing time. The long training time leads to high computational costs in NN hyperparameter 468 

optimization where massive NN training are involved in searching the wide hyperparameter 469 

space for a high-performing NN model, as discussed in the following section 3.2.    470 

3.2 NN’s hyperparameter optimization improves surrogate accuracy 471 

NN has a large number of hyperparameters. Here we adjust 5 hyperparameters and use 472 

Case I to investigate their influence on surrogate prediction accuracy. The 5 hyperparameters are, 473 

the number of hidden layers (L) where we consider the most 3 hidden layers, the number of 474 

nodes in hidden layer 1 (N1), in hidden layer 2 (N2), and in hidden layer 3 (N3), and the learning 475 

rate (lr) of Adam optimization algorithm. We consider the following choices: L={2, 3}, N1={10, 476 
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20, 40, 60, 80, 100}, N2={10, 20, 40, 60, 80, 100}, N3={0, 10, 20, 40, 60, 80, 100}, and 477 

lr=U[0.001, 0.1]. The first four hyperparameters are discrete variables and the last one, lr, is a 478 

continuous variable with uniform distribution. The choice of L determines the selection of N3 479 

showing a tree-like structure. We use tree-structured Parzen estimator (TPE) to search the 5 480 

hyperparameter space and find a set of values that gives the best-performing NN. We fix the 481 

activation function as ReLU (Agarap, 2018) which has been widely used and shown to produce 482 

good NN predictions. 483 

We use TPE to evaluate 100 sets of hyperparameters and the one giving the best validation 484 

score, i.e., the smallest MSE on validation data, is chosen as the optimal hyperparameters. 485 

Results indicate that the combination of N1=10, N2=10, N3=0, and lr=0.08 gives the best 486 

validation score. To investigate the impact of hyperparameters on NN prediction accuracy, we 487 

show the 100 sets of hyperparameters and their resulting R2 scores in predicting the 1000 test 488 

data in Figure 8. The figure indicates that different hyperparameter values result in dramatically 489 

different NN performance. The prediction R2 scores range from 0.66 to 0.93 where 32 490 

hyperparameter sets have the R2 scores over 0.90. The selected optimal NN producing the 491 

smallest MSE on the validation data also gives the best prediction performance on the test data 492 

with the R2 score of 0.93. It is desired that the best NN model chosen by validation data gives the 493 

best predictions, however, in practice it is not always the case, especially when the prediction 494 

data deviates a lot from the validation data. Extrapolation is always a difficulty in surrogate 495 

modeling and several researches are going on to improve the extrapolation accuracy (Gal, 2014). 496 

Although NNs perform significantly different with different combination of 497 

hyperparameters, the TPE algorithm can efficiently find the high-performing NNs based on 498 

previous samples information. As shown in Figure 8, good-performing NNs prefer simple 499 
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architectures with 2 hidden layers, e.g., most blue lines have N3 of 0. After TPE finds a good 500 

architecture of N1=10 and N2=10, it samples around this architecture in the hyperparameter 501 

space to fine tune the learning rate till finds the most suitable lr of 0.08. This work considers 5 502 

hyperparameters with limited choices, increasing the dimensions and possible choices of the 503 

hyperparameters would make the search more thorough and could produce a better-performing 504 

NN. Our surrogate method with SVD can accelerate the optimization process by reducing the 505 

NN training time.      506 

3.3 Evaluation of surrogate accuracy on large-scale spatial and temporal data 507 

We, using only 20 expensive sELM runs, fast build an accurate surrogate system of 42660 508 

GPPs at 1422 locations for 30 years. Therefore, for a data-model integration problem with the 509 

QoIs within the spatial and temporal ranges, we can directly extract the information of interest 510 

from the surrogate system to advance the analysis. The best-performing NN generated from our 511 

method gives an overall accurate prediction of the 42660 GPPs with averaged MSE of 0.02 and 512 

R2 scores of 0.93. When using the subset of the surrogate system for data-model integration 513 

studies, it is desired to analyze the surrogate accuracy at individual locations for specific times.  514 

Figure 9 shows averaged R2 scores over 30 years at 1422 locations. The figure indicates 515 

that the surrogate accuracy is not uniformly good for all the locations. We observe that most 516 

locations have R2 scores above 0.9 with the best R2 score of 0.96, and about 100 locations have 517 

R2 scores below 0.90 with the smallest R2 score of 0.79. We highlight the locations having zero 518 

GPP simulations in blue circles and find that these locations generally have poor predictions with 519 

low R2 scores. Connecting to Figure 2 where we label the locations in column-wise from south to 520 

north and from west to east, we identify that those locations with zero GPPs are mostly located in 521 
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the north where the temperature is relatively low and annual GPPs tend to be zero for parameter 522 

samples.  523 

We pick 3 locations to closely evaluate the surrogate accuracy (Figure 9). Location 1046 524 

has the best prediction with the highest R2 score, location 1345 has the worst prediction 525 

accuracy, and location 428 performs best among the locations with zero GPP simulations. Figure 526 

10 shows annual GPP simulations based on sELM and NN-based surrogate in evaluating the 527 

1000 test data for 30 years at the 3 locations. It can be seen that NN has difficulty in fitting zero 528 

GPP data. At location 1046 where the annual GPPs are relatively high with positive values, NN 529 

produces a great fit with a high R2 score of 0.96 and a small MSE of 0.013. Location 1046 530 

(Figure 2) is close to the lake where the variance in atmospheric drivers (e.g., temperature) is 531 

moderated. This reduced variance leads to a smooth response surface of GPP for which NN can 532 

easily build an accurate surrogate. In contrast, location 1345 has a large number of simulated 533 

GPPs less than 1.0 including many zero GPPs. NN shows difficulty in predicting these small 534 

GPPs resulting in a relatively poor performance with the R2 score of 0.79. Location 1345 is 535 

sitting in the north and has the lowest mean annual temperature, so the most parameter samples 536 

cause low vegetation growth and small GPP values. Moreover, location 1345 is far away from 537 

the lakes and has a large variation in atmospheric drivers. Since this location has a climate that is 538 

at the extreme end of the range for deciduous forests, the model response is expected and 539 

reasonable. However, this leads to a strong nonlinear response surface that casts difficulty in 540 

surrogate modeling. In comparison, although location 428 is located in the north with some small 541 

GPPs including zero values, it is also close to the lake which has a small variance in the 542 

atmospheric drivers. Thus, the NN prediction performance in location 428 is not bad with the R2 543 

score of 0.91.  544 
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Figure 11 plots the averaged R2 scores over all locations for 30 years. The R2 scores have 545 

small fluctuations between 0.93 and 0.94, displaying a uniformly good fit among the simulated 546 

years. So, when using the surrogate model at any specific year for a data-model analysis, we 547 

should be able to obtain a good approximation. In this study, we are considering annual GPPs. 548 

Although the variation of atmospheric drivers between years has an impact on surrogate 549 

accuracy, its influence is less strong compared to monthly GPPs, so a uniformly good fit among 550 

years is expected.  551 

Building a surrogate of the discontinuous response surface, e.g., vegetation turns from 552 

alive to dead representing as the GPP jumps from nonzero to zero, is a difficulty for almost all 553 

the state-of-the-art surrogate methods. Nevertheless, NNs, attribute to the layered architecture 554 

and the nonlinear activation function, usually show better performance compared to other 555 

surrogate approaches. To improve the surrogate accuracy for strong nonlinear and discontinuous 556 

problems, one strategy is using physics-informed domain decomposition methods to build 557 

surrogate models separately in different response surface regimes. This strategy requires the 558 

surrogate methods strongly connecting to the simulation model, and the methods are generally 559 

problem-specific requiring experts’ interaction. Another strategy is increasing the training data to 560 

explore complex problems. This strategy requires an increase in computational costs for extra 561 

expensive model simulations. In the following section 4, we investigate these two strategies and 562 

discuss their influence on surrogate accuracy.         563 

4 Discussion  564 

ESMs are complex whose response surfaces always display strong nonlinearity and 565 

discontinuity, casting a challenge to surrogate modeling. In this section, we consider the 566 

strategies of physics-informed learning and increase of training data to improve the surrogate 567 
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accuracy. We conduct two corresponding experiments to investigate our method’s performance 568 

in application of these two strategies. In experiment I, we divide the parameter space into two 569 

parts producing zero GPPs and nonzero GPPs, and we use 20 training data to build surrogates of 570 

the 42660 GPPs in the regime generating nonzero GPP samples. In experiment II, we build the 571 

surrogates of the 42660 GPPs in the original parameter domain (Figure 3), but with increasing 572 

training data of 200 and 1000.    573 

We use the results of Case I as a baseline to investigate our method’s performance in the 574 

two experiments. Figure 12 shows averaged R2 scores over 30 years at the 1422 locations in 575 

experiment I. The figure indicates that without zero GPPs our method can produce a very 576 

accurate surrogate at all locations with a uniformly high R2 score of 0.98. Building the surrogates 577 

in the subdomain without zero GPPs not only significantly improves the prediction accuracy in 578 

locations originally having poor fit in Case I, but also further improves the prediction accuracy in 579 

locations which already have a good fit in Case I. For example, the R2 score is dramatically 580 

improved from 0.79 to 0.97 at location 1345, from 0.96 to 0.99 at location 1046, and from 0.91 581 

to 0.98 at location 428. As shown in Figure 13, the NN almost perfectly reproduces sELM 582 

simulations at these 3 locations. Experiment I indicates that physics-informed domain 583 

decomposition can be a good strategy to improve surrogate accuracy. For smooth problems (e.g., 584 

no sharp jumps from non-zeros to zeros in response surfaces), our method can build a very 585 

accurate surrogate model based on a few training data.   586 

Figure 14 shows averaged R2 scores over 30 years at 1422 locations based on 200 and 587 

1000 training data in experiment II. The figure indicates that an increase of training data greatly 588 

enhances NN prediction accuracy. Adding 10 folds additional data from Ntrain=20 to 589 

Ntrain=200, the overall R2 score improves from 0.93 to 0.98; further increasing Ntrain to 1000, 590 
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the averaged R2 score is up to 0.993 with the worst value of 0.96. Although we observe similar 591 

nonuniform performance among locations in Figure 14 as in Figure 9, where the locations with 592 

zero GPPs have smaller R2 scores than others, increasing Ntrain significantly improves the 593 

accuracy at all locations, especially those originally having poor fits in Case I. For example, 594 

when Ntrain=200, most blue-circled locations have R2 scores above 0.95 and for Ntrain=1000, 595 

the R2 scores at these blue-circled locations are above 0.985 in comparison to the values below 596 

0.9 when Ntrain=20. In the examination of the 3 individual locations by comparing Figure 10 597 

and Figure 15, we see that at the location of 1046, an increase of Ntrain enables the NN to 598 

perfectly predict sELM simulations with negligible MSEs. Even for the location 428 with zero 599 

GPPs, more training data can capture the discontinuous behavior better with R2 score of 0.99 and 600 

MSE of 0.003 when Ntrain=1000. The worst location happens at 1345 for all cases due to its 601 

highly changed atmospheric drivers. Even so, the increase of Ntrain can still dramatically 602 

enhance the NN’s capability in simulating the difficult response surface. Experiment II indicates 603 

that increasing training data is able to significantly improve the surrogate accuracy. Our method 604 

scales well with the increase of training data and greatly improves prediction accuracy as Ntrain 605 

increases.  606 

The analysis of the two experiments suggests that our method is data-efficient for 607 

continuous problems. To improve the surrogate accuracy in discontinuous and highly nonlinear 608 

problems, we can use the physical-informed domain decomposition to focus on the continuous 609 

and smooth regions of the response surface. If the discontinuity is the inherent feature of the 610 

underlying function that we need to surrogate, an increase of training data would be a good 611 

solution for surrogate accuracy improvement.           612 
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Having built a surrogate system of many GPP variables over large spatial and temporal 613 

domains provides great flexibility and possibility for subsequent predictive analytics tasks. For 614 

example, the surrogate model can be used for analyzing sensitivities of model parameters to any 615 

set of spatial and temporal GPP variables, and for parameter optimization and uncertainty 616 

quantification based on a single-site or multiple-site, a single-year or multiple-year GPP 617 

observations using any defined objective functions. In addition, with the newly collected 618 

observations from additional sites or further time periods, we can use the same surrogate system 619 

for analysis as long as the QoIs are within the surrogate simulation ranges. In the future study, 620 

we will pursue the data-model integration using the constructed surrogate system.     621 

5 Conclusions 622 

In this work, we develop an SVD-enhanced, Bayesian-optimized, and NN-based surrogate 623 

method to improve the computational efficiency of large-scale surrogate modeling, so as to 624 

advance model-data integration studies in Earth system model simulations. Our method is data 625 

efficient in the fact that only 20 model simulations are needed to build an accurate surrogate 626 

system. This is a promising result because large Earth system model ensembles are always 627 

computationally infeasible, and 20 is a reasonable and affordable number of simulations to 628 

consider. In addition, our method is general purpose and can be efficiently applied to a wide 629 

range of Earth system problems with different spatial scales (local, regional, or global) at 630 

different simulation periods. It is super effective for smooth problems and scaled well for highly 631 

nonlinear and discontinuous problems.   632 

We apply our surrogate method to a regional ecosystem model. The results indicate that 633 

using only 20 model runs, we can build an accurate surrogate system of 42660 spatially- and 634 

temporally-varied GPPs with the R2 score of 0.93 and MSE of 0.02. For locations with robust 635 
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vegetation growth across the ensemble, our method can almost perfectly predict the model 636 

simulations with the R2 score of 0.96. For locations with low vegetation growth for some 637 

parameter samples and large variation in atmospheric drivers that cause discontinuous response 638 

surfaces, using physics-informed domain decomposition or the increase of training samples, our 639 

method can produce accurate predictions with the R2 score of 0.97 and 0.96, respectively. This 640 

application demonstrates our method’s capability in accurately reproducing expensive model 641 

simulations based on a few parallel model runs.     642 
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List of Figures 737 

 738 

Figure 1. Schematic of sELM, where processes are shown using blue boxes with dependencies 739 

on environmental data, 8 uncertain parameter inputs are listed in orange ovals, and model state 740 

variables are indicated by green shapes. Parameters are input to one or more processes as 741 

indicated by blue arrows.  Model state variables may be outputs for some processes and input for 742 

other processes as indicated by red arrows.   743 

 744 
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 746 

Figure 2. Locations of interest for which we build surrogates of GPP (gC/m^2/day) variables; 747 

total 1422 locations are considered. The figure shows the sELM simulated annual GPP based on 748 

one parameter sample. 749 

  750 

Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2018-327
Manuscript under review for journal Geosci. Model Dev.
Discussion started: 17 January 2019
c© Author(s) 2019. CC BY 4.0 License.



 36 

 751 

Figure 3. We consider 8 uncertain parameter inputs whose ranges are shown as axis limits. The 752 

20 training and 1000 test data are randomly drawn from the parameter space.  753 
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 755 

Figure 4. Singular value decay and the information contained in the first largest singular values. 756 

The top 5 singular values contain 97% information of training data matrix with 42660 GPP 757 

variables and 20 samples. 758 
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 760 

Figure 5. Performance of the NNs trained by 20 data with considering the different number of 761 

singular value coefficients after SVD. 762 
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 39 

 764 

Figure 6. Changes of loss function values along epochs for training and validation data (a) in 765 

Case I which builds surrogates of the 5 singular value coefficients with a simple NN (two hidden 766 

layers and each layer has 10 nodes, N1=N2=10) based on 20 training data (Ntrain=20), and (b-e) 767 

in Case II which builds surrogates of all outputs with different NN architectures and different 768 

training data size.  769 

  770 

Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2018-327
Manuscript under review for journal Geosci. Model Dev.
Discussion started: 17 January 2019
c© Author(s) 2019. CC BY 4.0 License.



 40 

 771 

Figure 7. Comparison of NN performance between Case I: building surrogates of 5 singular 772 

value coefficients (Nsvd=5) after SVD based on 20 training data (red dashed line) and Case II: 773 

building surrogates for all outputs directly with different numbers of training data (red solid 774 

line). Each training data represents one sELM simulation. The right y-axis shows the time in 775 

training the NN in Case II. The time for training the NN in Case I is 4 seconds.    776 
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 41 

 778 

Figure 8. Different sets of NN hyperparameters result in different R2 score in evaluating the 1000 779 

test data. Nl is the number of nodes in hidden layer l, where l=1, 2, and 3. lr is the learning rate 780 

of Adam algorithm for NN weights optimization.   781 
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 783 

Figure 9. Averaged R2 scores over 30 years at 1422 locations in evaluating the 1000 test data 784 

based on 20 training samples, where the blue circles identify the locations having zero GPP 785 

simulations. 786 
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 788 

Figure 10. Simulations of annual GPPs (gC/m^2/day) from sELM and NN-based surrogate 789 

model in evaluating 1000 test data for 30 years at 3 locations, where the NN is trained by 20 data 790 

using our method.  791 
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 793 

Figure 11. Averaged R2 scores over 1422 locations at 30 years in evaluating the 1000 test data.  794 
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 796 

Figure 12. Averaged R2 scores over 30 years at 1422 locations in evaluating the 1000 test data 797 

based on 20 training data in experiment I where the samples are generated in a subdomain of the 798 

parameter space without zero GPP simulations. The averaged R2 score is 0.98.   799 
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 801 

Figure 13. Simulations of annual GPPs (gC/m^2/day) from sELM and NN-based surrogate 802 

model in evaluating 1000 test data for 30 years at 3 locations in experiment I where the samples 803 

are generated in a subdomain of the parameter space without zero GPP simulations. 804 
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 806 

 807 

Figure 14. Averaged R2 scores over 30 years at 1422 locations in evaluating the 1000 test data 808 

based on 200 and 1000 training samples, where the blue circles identify the locations having zero 809 

GPP simulations.  810 
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 812 

813 
Figure 15. Simulations of annual GPPs (gC/m^2/day) from sELM and NN-baed surrogate model 814 

in evaluating 1000 test data for 30 years at 3 locations, where the NN is trained by 200 and 1000 815 

data. 816 
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